Doubrovinski Lab
Goldner, Amanda Nicole, Mohamad Ibrahim Cheikh, Miriam Osterfield, and Konstantin Doubrovinski. "Viscous shear is a key force in Drosophila ventral furrow morphogenesis." Development (2024): dev-202892.
|
|
|
M. I. Cheikh, N. Rodriguez, K. Doubrovinski: A scaling law for epithelial tissue rheology. bioRxiv 2023.09.12.557407; doi: https://doi.org/10.1101/2023.09.12.557407
|
|
|
Cheikh, Mohamad Ibrahim, Joel Tchoufag, Miriam Osterfield, Kevin Dean, Swayamdipta Bhaduri, Chuzhong Zhang, Kranthi Kiran Mandadapu, and Konstantin Doubrovinski. "A comprehensive model of Drosophila epithelium reveals the role of embryo geometry and cell topology in mechanical responses." Elife 12 (2023): e85569.
|
|
|
Cantoria, Mary Jo, Elaheh Alizadeh, Janani Ravi, Reeba P. Varghese, Nawat Bunnag, Kelvin W. Pond, Arminja N. Kettenbach et al. "Feedback in the β-catenin destruction complex imparts bistability and cellular memory." Proceedings of the National Academy of Sciences 120, no. 2 (2023): e2208787120.
|
|
|
Goldner, Amanda Nicole, Salena M. Fessehaye, Nataly Rodriguez, Kelly Ann Mapes, Miriam Osterfield, and Konstantin Doubrovinski. "Evidence that tissue recoil in the early Drosophila embryo is a passive not active process." Molecular biology of the cell 34, no. 10 (2023): br16.
|
|
|
Sapoznik, Etai, Bo-Jui Chang, Jaewon Huh, Robert J. Ju, Evgenia V. Azarova, Theresa Pohlkamp, Erik S. Welf et al. "A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics." Elife 9 (2020): e57681.
|
Doubrovinski, Konstantin, Joel Tchoufag, and Kranthi Mandadapu: A simplified mechanism for anisotropic constriction in Drosophila mesoderm. Development 145.24 (2018): dev167387.
|
|
|
Doubrovinski, Konstantin, Michael Swan, Oleg Polyakov, and Eric F. Wieschaus. "Measurement of cortical elasticity in Drosophila melanogaster embryos using ferrofluids." Proceedings of the National Academy of Sciences 114, no. 5 (2017): 1051-1056.
|
|
|
B.He*, K.Doubrovinski*. O. Polyakov and E. Wieschaus: Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation, Nature 508, (2014). (* co-first author).
|
X.Du, K.Doubrovinski and M.Osterfield: Self-organized cell motility from motor-filament interactions, Biophys. J. 102, 8 (2012).
|
K. Doubrovinski and K. Kruse: Cell motility resulting from spontaneous polymerization waves, Phys. Rev. Lett. 107, 258103 (2011).
|
K. Doubrovinski, O. Polyakov, and M. Kaschube: A mesoscopic description of contractile cytoskeletal meshworks, Eur. Phys. J. E 33, 105 (2010).
|
K.Doubrovinski and K. Kruse: Cytoskeletal waves in the absence of molecular motors, EPL 83, 18003 (2008).
|
K. Doubrovinski, and K. Kruse: Self-organization in systems of treadmilling filaments, Eur. Phys. J. E 31, 1 (2010).
|
P.Guthardt Torres, K.Doubrovinski and K.Kruse: Filament turnover stabilizes contractile cytoskeletal structures, EPL 91, 68003 (2010).
|
K. Doubrovinski and M.J. Herrmann: Stability of Localized Patterns in Neural Fields, Neural Comp. 21, 1125 (2009).
|
K. Doubrovinski and K. Kruse: Self-organization of treadmilling filaments, Phys. Rev. Lett. 99, 228104 (2007).
|
K. Doubrovinski and M. Howard: Stochastic model for Soj relocation dynamics in Bacillus subtilis, Proc. Natl. Acad. Sci USA 102, 28 (2005).
|